Proving myself wrong about a rock

"Ultramafic" refers to rocks with high Magnesium and Iron content; the County is host to a sequence of rocks derived from the upper part of the Mantle during a continental collision.
The connection of this rock with that trip is only in retrospect. Since finding the rock in a box several years ago, I've considered it might be a meteorite, mainly because it is rather heavy and sort of "looks right". Recently I decided to find out.
I decided to first measure its density. I don't have lab equipment available, so I used what I found in the kitchen: a spice scale (capacity 0.5kg) and a 0.5 liter measuring cup. I weighed the stone (210g), then put the stone in the cup and added water until it was covered, turned it all ways with a spoon to knock off all bubbles, then topped it to 500cc, the top line on the cup. I fished out the stone and read "a little below 450", which I estimated as just above 440cc. So the difference was less than 60cc, and I called it 58-to-60cc. Divide these limits into 210, and the result is 3.5-3.6 g/cc. That's in the right range for a stony-iron meteorite.
Checking relative accuracy, I decided I wasn't quite satisfied. The scale is marked each 10g, and can be read to 5g with care, so 210±5 meant a range of ±2.3%. The measuring cup, however, is only marked each 50cc, and it is hard to read a fifth of a marking, particularly because their spacing changes on the tapered cup. Generously assuming I can read to 10cc accurately, I still was faced with a range of ±10cc out of about sixty, or about ±17%. And there's no telling how properly printed the markings are...
So I used weight instead of volume. I tied a thread harness to the rock, so it would hang flat. I put the rock into the cup with enough water to cover it when I lifted it clear of the bottom. The whole rig exceeded the capacity of the scale, but not when I lifted the rock above the bottom of the cup, yet still under the water. I could just make it: 490 grams. Then I lifted the rock all the way out, and the reading dropped to, as nearly as I could tell, between 435cc and 440cc. I split the difference at 52.5±2.5cc, an error figure of ±4.8%. Now we're getting somewhere.
The result was 4.0g/cc, ±5.3%, or a range from 3.8-4.2. The former measurement, 3.55 with a ±17% range, covers a possible span of 2.9-4.2! Anyway, it doesn't contradict the new measurement. Now...what has a density of 4?
Stony meteorites have a density in the range 3.0-3.3. Iron ones are near 8, and even stony-iron ones are typically less than 3.8. My stone is either too heavy or too light to be a meteorite, and is not magnetic, so stony-iron is out. A closer look provides a further clue.

A quick look at the Meteorite Realities page confirmed my suspicion that no meteorite formed with internal holes; there is no gas in space to open the holes, and these are clearly gas bubble holes. Though they appear to constitute only a few percent of the rock, they indicate that the bulk density without porosity ought to be several percent greater, at least 4.2-4.4 g/c. Now I'm in trouble...


What is clear is that this is a combination of garnet or spinel in a siderite-hematite mix. These occur together in metamorphic assemblages, and both San Benito County and other places I frequented in those years were metamorphic terranes with plenty of sources for iron ore, which is just what this is.
1 comment:
https://hillscloud.wordpress.com/4312-2/
Post a Comment